资源类型

期刊论文 593

会议视频 4

会议信息 1

年份

2024 1

2023 63

2022 59

2021 63

2020 43

2019 50

2018 29

2017 39

2016 31

2015 27

2014 27

2013 24

2012 21

2011 17

2010 22

2009 25

2008 14

2007 20

2006 3

2005 2

展开 ︾

关键词

固体氧化物燃料电池 6

太阳能 5

2022全球十大工程成就 2

Cu(In 2

Ga)Se2 2

即时医疗 2

厌氧消化 2

太阳电池 2

干细胞 2

碳基燃料 2

调节性T细胞 2

1T/2H-MoS2 1

3D打印 1

3D支架平台 1

CAR设计 1

Caco-2细胞 1

Inorganic Chemistry 1

MOF基催化剂 1

NASICON 1

展开 ︾

检索范围:

排序: 展示方式:

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

《能源前沿(英文)》 2012年 第6卷 第2期   页码 179-183 doi: 10.1007/s11708-012-0177-y

摘要: The open circuit voltage ( ) of small-molecule organic solar cells (OSCs) could be improved by doping suitable fluorescent dyes into the donor layers. In this paper, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) was used as a dopant, and the performance of the OSCs with different DCJTB concentration in copper phthalocyanine (CuPc) was studied. The results showed that the of the OSC with 50% of DCJTB in CuPc increased by 15%, compared with that of the standard CuPc/fullerene (C ) device. The enhancement of the was attributed to the lower highest occupied molecular orbital (HOMO) level in the DCJTB than that in the CuPc. Also, the light absorption intensity is enhanced between 400 and 550 nm, where CuPc and C have low absorbance, leading to a broad absorption spectrum.

关键词: organic solar cells (OSCs)     open circuit voltage     fluorescent dye doping     4-(dicyanomethylene)-2-t-butyl-6-(1     1     7     7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)    

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 516-524 doi: 10.1007/s11705-022-2238-z

摘要: All-inorganic cesium lead bromide (CsPbBr3) perovskite solar cells have been attracting growing interest due to superior performance stability and low cost. However, low light absorbance and large charge recombination at TiO2/CsPbBr3 interface or within CsPbBr3 film still prevent further performance improvement. Herein, we report devices with high power conversion efficiency (9.16%) by introducing graphene oxide quantum dots (GOQDs) between TiO2 and perovskite layers. The recombination of interfacial radiation can be effectively restrained due to enhanced charge transfer capability. GOQDs with C-rich active sites can involve in crystallization and fill within the CsPbBr3 perovskite film as functional semiconductor additives. This work provides a promising strategy to optimize the crystallization process and boost charge extraction at the surface/interface optoelectronic properties of perovskites for high efficient and low-cost solar cells.

关键词: all inorganic     perovskite solar cells     graphene oxide quantum dots     high performance     stability    

Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum

Yu Cao, Xinyun Zhu, Xingyu Tong, Jing Zhou, Jian Ni, Jianjun Zhang, Jinbo Pang

《化学科学与工程前沿(英文)》 2020年 第14卷 第6期   页码 997-1005 doi: 10.1007/s11705-019-1906-0

摘要: Thin film solar cells have been proved the next generation photovoltaic devices due to their low cost, less material consumption and easy mass production. Among them, micro-crystalline Si and Ge based thin film solar cells have advantages of high efficiency and ultrathin absorber layers. Yet individual junction devices are limited in photoelectric conversion efficiency because of the restricted solar spectrum range for its specific absorber. In this work, we designed and simulated a multi-junction solar cell with its four sub-cells selectively absorbing the full solar spectrum including the ultraviolet, green, red as well as near infrared range, respectively. By tuning the Ge content, the record efficiency of 24.80% has been realized with the typical quadruple junction structure of a-Si:H/a-Si Ge :H/µc-Si:H/µc-Si Ge :H. To further reduce the material cost, thickness dependent device performances have been conducted. It can be found that the design of total thickness of 4 m is the optimal device design in balancing the thickness and the . While the design of ultrathin quadruple junction device with total thickness of 2 m is the optimized device design regarding cost and long-term stability with a little bit more reduction in . These results indicated that our solar cells combine the advantages of low cost and high stability. Our work may provide a general guidance rule of utilizing the full solar spectrum for developing high efficiency and ultrathin multi-junction solar cells.

关键词: thin films     solar cells     quadruple junction solar cell     amorphous silicon     silicon germanium alloy     quantum efficiency    

phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solarcells

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1060-1078 doi: 10.1007/s11705-021-2117-z

摘要: Novel near-infrared sensitizers with different anchoring groups aiming toward improved stability and efficiency of dye-sensitized solar cells were synthesized. Adsorption of these dyes on the mesoporous TiO2 surface revealed the dye adsorption rate of –CH=CH–COOH (SQ-139)>–CH=C(CN)COOH (SQ-140)>–PO3H2 (SQ-143)>–CH=C(CN)PO3H2 (SQ-148)>–CH=C(CN)PO3H–C2H5 (SQ-157)>–PO3H–C2H5 (SQ-151)>–CH=CH–COOH(–PO3H2) (SQ-162). The binding strength of these dyes on mesoporous TiO2 as investigated by dye desorption studies follows SQ-162>SQ-143>SQ-148>SQ-139>SQ-157~SQ-151>SQ-140 order. The acrylic acid anchoring group was demonstrated to be an optimum functional group owing to its fast dye adsorption rate and better binding strength on TiO2 along with good photoconversion efficiency. Results of dye binding on TiO2 surface demonstrated that SQ-162 bearing double anchoring groups of phosphonic and acrylic acid exhibited>550 times stronger binding as compared to dye SQ-140 having cyanoacrylic acid anchoring group. SQ-140 exhibited the best photovoltaic performance with photon harvesting mainly in the far-red to near-infrared wavelength region having short circuit current density, open-circuit voltage and fill factor of 14.28 mA·cm–2, 0.64 V and 0.65, respectively, giving the power conversion efficiency of 5.95%. Thus, dye SQ-162 not only solved the problem of very poor efficiency of dye bearing only phosphonic acid while maintaining the extremely high binding strength opening the path for the design and development of novel near-infrared dyes with improved efficiency and stability by further increasing the π-conjugation.

关键词: anchoring groups     adsorption behaviour     dye-binding strength     squaraine dyes     dye-sensitized solar cells    

Plated contacts for solar cells with superior adhesion strength to screen printed solar cells

R. CHEN,S. WANG,A. WENHAM,Z. SHI,T. YOUNG,J. JI,M. EDWARDS,A. SUGIANTO,L. MAI,S. WENHAM,C. CHONG

《能源前沿(英文)》 2017年 第11卷 第1期   页码 72-77 doi: 10.1007/s11708-016-0428-4

摘要: The improvement of adhesion strength and durability of plated contacts is required for cell manufacturers to gain confidence for large-scale manufacturing. To overcome weak adhesion at the metal/Si interface, new approaches were developed. These involve the formation of laser-ablated anchor points, or grooves in the extreme case of overlapping anchor points, in the heavily doped silicon surface. When plated, these features greatly strengthen the mechanical adhesion strength of the metal. A stylus-based adhesion tester was developed specifically for evaluating the effectiveness of plated contacts to smooth silicon surfaces. The use of such a tester was also extended in this work to textured and roughened surfaces to allow evaluation of different metal contacting approaches. The adhesion strengths for various metal contacting schemes were evaluated, including screen-printed silver contacts, nickel/copper (Ni/Cu) light-induced plated (LIP) contacts for laser-doped selective emitter (LDSE) cells, buried-contact solar cells (BCSCs), and Ni/Cu LIP contacts formed with laser-ablated anchoring points in selective emitter (LAASE) cells. The latter has superior adhesion strength. The standard “peel test” of the industry was compared to the stylus-based adhesion testing, with the latter shown value for testing metal contacts on smooth surfaces but with caution needed for use with textured or roughened surfaces.

关键词: light-induced plating     metal adhesion strength     copper plating     metal contacts     solar cell durability     silicon solar cells    

Special issue: Technologies for future high-efficiency industrial silicon wafer solar cells

《能源前沿(英文)》 2017年 第11卷 第1期   页码 1-3 doi: 10.1007/s11708-016-0436-4

Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent

Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 164-179 doi: 10.1007/s11705-020-1976-z

摘要: To understand the complex behaviors of photogenerated charge carriers within polymer-based bulk-heterojunction-type solar cells, the charge-carrier photogeneration and extraction dynamics are simultaneously estimated using a transient photocurrent technique under various external-bias voltages, and a wide range of excitation intensities are analyzed. For this purpose, conventional devices with 80 nm thick active layers consisting of a blend of representative P3HT and PTB7 electron-donating polymers and proper electron-accepting fullerene derivatives were used. After the correction for the saturation behavior at a high excitation-intensity range nearby the regime of the space charge-limited current, the incident-photon-density-dependent maximum photocurrent densities at the initial peaks are discussed as the proportional measures of the charge-carrier-photogeneration facility. By comparing the total number of the extracted charge carriers to the total number of the incident photons and the number of the initially photogenerated charge carriers, the external quantum efficiencies as well as the extraction quantum efficiencies of the charge-carrier collection during a laser-pulse-induced transient photocurrent process were obtained. Subsequently, the charge-carrier concentration-dependent mobility values were obtained, and they are discussed in consideration of the additional influences of the charge-carrier losses from the device during the charge-carrier extraction that also affects the photocurrent-trace shape.

关键词: charge-carrier photogeneration     transient photocurrent     polymer solar cells     charge-carrier extraction     space charge-limited current    

Computer modeling of crystal growth of silicon for solar cells

Lijun LIU, Xin LIU, Zaoyang LI, Koichi KAKIMOTO

《能源前沿(英文)》 2011年 第5卷 第3期   页码 305-312 doi: 10.1007/s11708-011-0155-9

摘要: A computer simulator with a global model of heat transfer during crystal growth of Si for solar cells is developed. The convective, conductive, and radiative heat transfers in the furnace are solved together in a coupled manner using the finite volume method. A three-dimensional (3D) global heat transfer model with 3D features is especially made suitable for any crystal growth, while the requirement for computer resources is kept permissible for engineering applications. A structured/unstructured combined mesh scheme is proposed to improve the efficiency and accuracy of the simulation. A dynamic model for the melt-crystal (mc) interface is developed to predict the phase interface behavior in a crystal growth process. Dynamic models for impurities and precipitates are also incorporated into the simulator. Applications of the computer simulator to Czochralski (CZ) growth processes and directional solidification processes of Si crystals for solar cells are introduced. Some typical results, including the turbulent melt flow in a large-scale crucible of a CZ-Si process, the dynamic behaviors of the mc interface, and the transport and distributions of impurities and precipitates, such as oxygen, carbon, and SiC particles, are presented and discussed. The findings show the importance of computer modeling as an effective tool in the analysis and improvement of crystal growth processes and furnace designs for solar Si material.

关键词: computer modeling     silicon     crystal growth     solar cells    

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 571-578 doi: 10.1007/s11705-020-2010-1

摘要: Emerging needs for the large-scale industrialization of organic solar cells require high performance cathode interlayers to facilitate the charge extraction from organic semiconductors. In addition to improving the efficiency, stability and processability issues are major challenges. Herein, we design block copolymers with well controlled chemical composition and molecular weight for cathode interlayer applications. The block copolymer coated cathodes display high optical transmittance and low work function. Conductivity studies reveal that the block copolymer thin film has abundant conductive channels and excellent longitudinal electron conductivity due to the interpenetrating networks formed by the polymer blocks. Applications of the cathode interlayers in organic solar cells provide higher power conversion efficiency and better stability compared to the most widely-applied ZnO counterparts. Furthermore, no post-treatment is needed which enables excellent processability of the block copolymer based cathode interlayer.

关键词: organic solar cell     block copolymer     cathode interlayer    

先进电池——材料和技术创新推动未来能源发展

屠海令, 彭苏萍

《工程(英文)》 2023年 第21卷 第2期   页码 1-2 doi: 10.1016/j.eng.2022.12.003

enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction solarcells at high pressure and high power

Lei ZHAO,Wenbin ZHANG,Jingwei CHEN,Hongwei DIAO,Qi WANG,Wenjing WANG

《能源前沿(英文)》 2017年 第11卷 第1期   页码 85-91 doi: 10.1007/s11708-016-0437-3

摘要: The intrinsic a-Si:H passivation layer inserted between the doped a-Si:H layer and the c-Si substrate is very crucial for improving the performance of the a-Si:H/c-Si heterojunction (SHJ) solar cell. The passivation performance of the a-Si:H layer is strongly dependent on its microstructure. Usually, the compact a-Si:H deposited near the transition from the amorphous phase to the nanocrystalline phase by plasma enhanced chemical vapor deposition (PECVD) can provide excellent passivation. However, at the low deposition pressure and low deposition power, such an a-Si:H layer can be only prepared in a narrow region. The deposition condition must be controlled very carefully. In this paper, intrinsic a-Si:H layers were prepared on n-type Cz c-Si substrates by 27.12 MHz PECVD at a high deposition pressure and high deposition power. The corresponding passivation performance on c-Si was investigated by minority carrier lifetime measurement. It was found that an excellent a-Si:H passivation layer could be obtained in a very wide deposition pressure and power region. Such wide process window would be very beneficial for improving the uniformity and the yield for the solar cell fabrication. The a-Si:H layer microstructure was further investigated by Raman and Fourier transform infrared (FTIR) spectroscopy characterization. The correlation between the microstructure and the passivation performance was revealed. According to the above findings, the a-Si:H passivation performance was optimized more elaborately. Finally, a large-area SHJ solar cell with an efficiency of 22.25% was fabricated on the commercial 156 mm pseudo-square n-type Cz c-Si substrate with the open-circuit voltage ( ) of up to 0.732 V.

关键词: PECVD     high pressure and high power     a-Si:H microstructure     passivation     heterojunction solar cell    

An industrial solution to light-induced degradation of crystalline silicon solar cells

Meng XIE,Changrui REN,Liming FU,Xiaodong QIU,Xuegong YU,Deren YANG

《能源前沿(英文)》 2017年 第11卷 第1期   页码 67-71 doi: 10.1007/s11708-016-0430-x

摘要: Boron-oxygen defects can cause serious light-induced degradation (LID) of commercial solar cells based on the boron-doped crystalline silicon (c-Si), which are formed under the injection of excess carriers induced either by illumination or applying forward bias. In this contribution, we have demonstrated that the passivation process of boron-oxygen defects can be induced by applying forward bias for a large quantity of solar cells, which is much more economic than light illumination. We have used this strategy to trigger the passivation process of batches of aluminum back surface field (Al-BSF) solar cells and passivated emitter and rear contact (PERC) solar cells. Both kinds of the treated solar cells show high stability in efficiency and suffer from very little LID under further illumination at room temperature. This technology is of significance for the suppression of LID of c-Si solar cells for the industrial manufacture.

关键词: Boron-oxygen defects     c-Si solar cells     light-induced degradation     passivation     forward bias    

styrenesulfonate) electrodes with enhanced conductivity and transparency for semitransparent perovskite solarcells

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 206-216 doi: 10.1007/s11705-022-2203-x

摘要: Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is an important organic electrode for solution-processed low-cost electronic devices. However, it requires doping and post-solvent treatment to improve its conductivity, and the chemicals used for such treatments may affect the device fabrication process. In this study, we developed a novel route for exploiting ultrafast lasers (femtosecond and picosecond laser) to simultaneously enhance the conductivity and transparency of PEDOT:PSS films and fabricate patterned solution-processed electrodes for electronic devices. The conductivity of the PEDOT:PSS film was improved by three orders of magnitude (from 3.1 to 1024 S·cm–1), and high transparency of up to 88.5% (average visible transmittance, AVT) was achieved. Raman and depth-profiling X-ray photoelectron spectroscopy revealed that the oxidation level of PEDOT was enhanced, thereby increasing the carrier concentration. The surface PSS content also decreased, which is beneficial to the carrier mobility, resulting in significantly enhanced electrical conductivity. Further, we fabricated semitransparent perovskite solar cells using the as-made PEDOT:PSS as the transparent top electrodes, and a power conversion efficiency of 7.39% was achieved with 22.63% AVT. Thus, the proposed route for synthesizing conductive and transparent electrodes is promising for vacuum and doping-free electronics.

关键词: PEDOT:PSS     ultrafast laser     transparent electrode     ST-PSCs     patterning    

钙钛矿太阳能电池效率刷新世界纪录

Sean O'Neill

《工程(英文)》 2021年 第7卷 第8期   页码 1037-1040 doi: 10.1016/j.eng.2021.06.009

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

《能源前沿(英文)》 2016年 第10卷 第2期   页码 227-239 doi: 10.1007/s11708-016-0405-y

摘要: Solar photo voltaic array (SPVA) generates a smaller amount of power than the standard rating of the panel due to the partial shading effect. Since the modules of the arrays receive different solar irradiations, the P-V characteristics of photovoltaic (PV) arrays contain multiple peaks or local peaks. This paper presents an innovative method (magic square) in order to increase the generated power by configuring the modules of a shaded photovoltaic array. In this approach, the physical location of the modules in the total cross tied (TCT) connected in the solar PV array is rearranged based on the magic square arrangement pattern. This connection is done without altering any electrical configurations of the modules in the PV array. This method can distribute the shading effect over the entire PV array, without concentrating on any row of modules and can achieve global peaks. For different types of shading patterns, the output power of the solar PV array with the proposed magic square configuration is compared with the traditional configurations and the performance is calculated. This paper presents a new reconfiguration technique for solar PV arrays, which increases the PV power under different shading conditions. The proposed technique facilitates the distribution of the effect of shading over the entire array, thereby, reducing the mismatch losses caused by partial shading. The theoretical calculations are tested through simulations in Matlab/Simulink to validate the results. A comparison of power loss for different types of topologies under different types of shading patterns for a 4 × 4 array is also explained.

关键词: photovoltaic cells     mismatch loss     shading patterns     partial shading     magic square     power enhancement     global peaks and total cross tied (TCT)    

标题 作者 时间 类型 操作

Enhancement of open circuit voltage in organic solar cells by doping a fluorescent red dye

Qing LI, Junsheng YU, Yue ZANG, Nana WANG, Yadong JIANG

期刊论文

Enhanced charge extraction for all-inorganic perovskite solar cells by graphene oxide quantum dots modified

期刊论文

Ultrathin microcrystalline hydrogenated Si/Ge alloyed tandem solar cells towards full solar spectrum

Yu Cao, Xinyun Zhu, Xingyu Tong, Jing Zhou, Jian Ni, Jianjun Zhang, Jinbo Pang

期刊论文

phosphonic acid anchoring groups aiming toward enhancing the stability and efficiency of mesoscopic solarcells

期刊论文

Plated contacts for solar cells with superior adhesion strength to screen printed solar cells

R. CHEN,S. WANG,A. WENHAM,Z. SHI,T. YOUNG,J. JI,M. EDWARDS,A. SUGIANTO,L. MAI,S. WENHAM,C. CHONG

期刊论文

Special issue: Technologies for future high-efficiency industrial silicon wafer solar cells

期刊论文

Charge-carrier photogeneration and extraction dynamics of polymer solar cells probed by a transient photocurrent

Boa Jin, Hyunmin Park, Yang Liu, Leijing Liu, Jongdeok An, Wenjing Tian, Chan Im

期刊论文

Computer modeling of crystal growth of silicon for solar cells

Lijun LIU, Xin LIU, Zaoyang LI, Koichi KAKIMOTO

期刊论文

Block copolymers as efficient cathode interlayer materials for organic solar cells

Dingqin Hu, Jiehao Fu, Shanshan Chen, Jun Li, Qianguang Yang, Jie Gao, Hua Tang, Zhipeng Kan, Tainan Duan, Shirong Lu, Kuan Sun, Zeyun Xiao

期刊论文

先进电池——材料和技术创新推动未来能源发展

屠海令, 彭苏萍

期刊论文

enhanced chemical vapor deposition of excellent a-Si:H passivation layers for a-Si:H/c-Si heterojunction solarcells at high pressure and high power

Lei ZHAO,Wenbin ZHANG,Jingwei CHEN,Hongwei DIAO,Qi WANG,Wenjing WANG

期刊论文

An industrial solution to light-induced degradation of crystalline silicon solar cells

Meng XIE,Changrui REN,Liming FU,Xiaodong QIU,Xuegong YU,Deren YANG

期刊论文

styrenesulfonate) electrodes with enhanced conductivity and transparency for semitransparent perovskite solarcells

期刊论文

钙钛矿太阳能电池效率刷新世界纪录

Sean O'Neill

期刊论文

Performance enhancement of partially shaded solar PV array using novel shade dispersion technique

Namani RAKESH,T. Venkata MADHAVARAM

期刊论文